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Statistical tests are applied for the detection of systematic errors in data sets

from least-squares refinements or other residual-based reconstruction processes.

Samples of the residuals of the data are tested against the hypothesis that they

belong to the same distribution. For this it is necessary that they show the same

mean values and variances within the limits given by statistical fluctuations.

When the samples differ significantly from each other, they are not from the

same distribution within the limits set by the significance level. Therefore they

cannot originate from a single Gaussian function in this case. It is shown that a

significance cutoff results in exactly this case. Significance cutoffs are still

frequently used in charge-density studies. The tests are applied to artificial data

with and without systematic errors and to experimental data from the literature.

1. Introduction

Systematic errors in diffraction data are an important and

widely neglected topic. There already exist a variety of stan-

dard tools for the detection of systematic errors such as the

goodness of fit (GoF), normal probability plots (n.p.p.’s)

(Abrahams & Keve, 1971) or plots of observed versus calcu-

lated intensities and of the residuals against the resolution;

however, not even these simple and quick-to-apply tools are

published frequently in charge-density studies. A high quality

of the data/model is easy to prove with these tools, yet these

are not often made accessible. Why is that? Publication of

standard structures and charge-density studies with large GoF

values and bent n.p.p.’s seems to be perfectly acceptable in the

community. The appearance of large GoF values induces not

even a discussion of the underlying causes.

In order to draw the community’s attention more to this

important topic of systematic errors, further tools have been

developed and applied. It is important to develop graphical

representations of the data that are conclusive with respect to

the underlying error. The developed tools comprise real-space

methods, like the fractal dimension plots together with the

local and global descriptors net and gross residual electrons

(Meindl & Henn, 2008), and the ‘percentage of features’

(POF) (Meindl & Henn, 2012), that is derived from the fractal

dimension. With the help of the fractal dimension plot and

artificial data it was shown that neglect of third-order anhar-

monic motion leads to a characteristic (shashlik-like) pattern

in the residual density (Meindl et al., 2010). This imprint was

also found in experimental data (Henn et al., 2010; Herbst-
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Irmer et al., 2013) and confirmed by other scientists [see, for

example, Paul et al. (2011) and Poulain et al. (2014)].

Reciprocal-space methods were also developed, like the

theoretical R values (Henn & Schönleber, 2013; Henn &

Meindl, 2014a). These predict the agreement factor from the

diffraction data under the assumption of absence of systematic

errors and can be applied in a similar way to the free R value

(Brünger, 1992). An important result from the theoretical R

values is that when no systematic errors apply, the actual R

value from the refinement is basically the square root of a

constant that takes the degrees of freedom into account

multiplied by the inverse mean-squared significance of the

data. As a consequence, every action that increases the

significance of the data leads to a reduction of the agreement

factor. Among these actions leading to reduced R values are

valid ones like increasing the redundancy of the data and

invalid ones that only formally increase the average signifi-

cance of the data set. These are, for example, application of a

significance cutoff or underestimation of the standard uncer-

tainties (s.u.’s) of the strong reflections. It appears that all of

these valid and invalid methods are applied in current charge-

density studies (Henn & Meindl, 2014a,b).

Additional descriptors were derived from the theoretical R

values like the meta residual value Rmeta. The theoretical R

values and the meta residual value, however, both assume a

Gaussian distribution of residuals. This assumption holds

neither in standard structure determination (Henn & Schön-

leber, 2013) nor in charge-density studies (Henn & Meindl,

2014a,b).

Statistical methods for the analysis of the distribution of

residuals under certain limiting assumptions were developed,

too, and extended to more general cases (Henn & Meindl,

2010, 2012). Recently, a statistical analysis method based on

the uniform distribution of residuals with respect to different

properties like resolution or intensity was developed and

implemented with the help of a �2 test (Henn & Meindl,

2014b). A visual representation of these distributions that

correspond to conditional probabilities was developed, too

(BayCoN plots). These are expected to be of help in identi-

fying sources of systematic errors. In the present work we

complement the selection of tools by a statistical test of resi-

duals against equality of residual mean values and variances

and by analysis methods based on the distribution of rare

events.

2. Theory

When the residuals � ¼ ðIo � IcÞ=½�ðIoÞ� all stem from one

and the same distribution, which need not be a Gaussian

distribution, different subsets of the residuals, e.g. from reso-

lution or calculated intensity shells, will show similar

mean values and variances within the limits given by

statistical fluctuations.1 Only if the residuals stem from one

and the same distribution may they belong to a Gaussian

distribution.

For a sample of n values taken from a continuous random

variable X from a normal distribution with mean value � and

variance �2, the mean values X are distributed according to a

normal distribution with the same mean value � and reduced

variance �2=n. This holds according to the central limit

theorem approximately also in the case when X follows any

arbitrary distribution with mean value � and variance �2

(Semendjajew et al., 2012).

2.1. Mean values of binned residuals

For applications to experimental data it is convenient to

calculate the mean values of the residuals for bins of

approximately the same number of data points n (strength)

and to equip these with error bars. The bin mean values

should be consistent with each other, i.e. in a plot of the

mean values for different bins it should be possible to

draw a line such that each error bar is crossed once. The mean

values should also be consistent with zero, i.e. the zero line

should cross all error bars once. In order to be tolerant of

outliers the error bar might be chosen to be as large as

�3ð�2
i =nÞ

1=2, where the variance �2
i is the population variance

from the ith bin.

The bins of equal strength may be taken randomly from the

data or from the data sorted according to the resolution, the

calculated intensity, or the experimental s.u.’s. In these cases

the expected residual bin mean values are zero and their

variances are one. Each way of sorting the data might reveal

new dependencies of the mean values. Two ways of sorting

deserve a short discussion, beginning with when the data are

sorted according to the residuals themselves, for example in

increasing order from the negative to the positive ones. It is

clear that this cannot generally lead to similar mean residual

values, as the data are sorted with respect to this property. It

should, however, lead to similar variances for all bins but those

of the most extreme values. This is because sorting residual

data from a normal distribution in increasing order results in

an ‘s’ curve with approximately constant slope in the middle

part. The exact value of the variance depends on the total

number of data, the number of bins and the number of data

points in each bin. For the extreme case of only two data

points in each bin and an infinite large data set it is obvious

that the expected variance for each bin approaches zero.

When, however, for the same infinite large data set only two

bins are chosen, one bin will contain the negative residuals and

the other one the positive residuals leading to identical

variances well below one in each bin.

Secondly, when the data are sorted according to squared

residuals, this cannot generally lead to similar variances, but it

should lead to similar mean values, as still all residual mean

values should be consistent with the value zero.

This will become clearer when the respective plots are

discussed in x4.
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1 We will not further distinguish here between residuals based on the bare s.u.
from the reflection file and those derived from error models. In all cases the
residuals are based on that entity which was used in the least-squares
refinement.



2.2. Variances of binned residuals

For X being normally distributed with parameters � and

� the new variable �2 ¼ ðn� 1Þð�2
i =�

2Þ with population

variance �2
i of the ith bin with strength n follows a �2 distri-

bution with m ¼ n� 1 degrees of freedom. For a given level of

significance � a lower threshold value �2
l and a higher

threshold value �2
h is given within which the value �2 is found

with probability 1� �: �2
l ¼ �

2
1��=2;n�1 and �2

h ¼ �
2
�=2;n�1. The

confidence interval is given by (Semendjajew et al., 2012)

ðn� 1Þ�2
i

�2
�=2;n�1

� �2
�
ðn� 1Þ�2

i

�2
1��=2;n�1

: ð1Þ

For applications it is convenient to plot the bin variances

together with the confidence interval after specification of �.

All bin variances should be consistent with the assumption of

having the same population variance, i.e. it should be possible

to draw a constant value that lies completely in the confidence

interval. To be tolerant of outliers, � should be chosen small.

For a start, we use � ¼ 0:01.

2.3. Validity of the refinements

From the point of view of the present statistical analysis

method, the refinements are invalidated the more residual bin

mean values are inconsistent with the value zero, the more

residual bin mean values are inconsistent with each other, and

the more residual bin variances are not consistent with each

other. This is because these events make it unlikely that all

residuals belong to the same population, which is character-

ized by only one mean value (hopefully close to zero) and only

one variance (preferably close to one). When the residual bin

variances are approximately the same around a value different

from one this would mean that all s.u.’s are too small or too

large and this could be resolved by scaling the s.u.’s. It should

be stressed, however, that distorted residual statistics need not

lead to invalid model parameter estimates; this has to be

investigated in each individual case.

2.4. Cumulative plots of rare events

The events in the tails of the normal distribution are

considered to be rare events, because they appear with a low

frequency. It is convenient to measure the distance in multi-
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Figure 1
Mean values (green line with blue error bars) and variances (red line with dashed confidence interval according to � ¼ 0:01) of residuals
� ¼ ðIo � IcÞ=½�ðIoÞ� in bins of equal strength sorted by the calculated intensity (top) and by sin �=� (bottom) of artificial data without (left) and with
significance cutoff Io=�ðIoÞ � 3 (right). The same data set was used in both cases.



ples of the standard uncertainty. Events j�j> 3 have a prob-

ability of 0.27%, events j�j> 4 of only 0.006%. It is also

convenient to count the total number of rare events. When the

data are sorted according to intensity or resolution and the

total number of rare events up to a given resolution or to a

given intensity are counted, the resulting plot is a (non-

normalized) cumulative plot of rare events. This should result

in a linearly increasing line, as there should be an equal

probability for each reflection to result in a rare event, when

the model is adequate and no systematic errors apply. A

convex plot indicates that rare events are more frequently

connected to the reflections in the beginning of the plot, e.g.

low-resolution reflections. A concave shape indicates that the

rare events originate more frequently from the reflections in

the end of the plot, e.g. high-intensity reflections. Steps in the

plots indicate a region with a very high frequency of rare

events. Cumulative distributions are widely used in stochastics,

for example as an antiderivative of probability density func-

tions, and in the Kolmogorov–Smirnov test [see, for example,

Von Mises (1964)].

3. Application to artificial data

3.1. Effects of a significance cutoff

The artificial data set 24 from Henn & Meindl (2014b)

serves as a reference for a data set without any systematic

errors (no cutoff applied, left column of Fig. 1) and for a data

set with a well known single systematic error [application of

cutoff Io=�ðIoÞ � 3 in least-squares refinement, right column

of Fig. 1]. The respective BayCoN plots are in the cited

literature, too (see Figs. 2 and 4 in the cited literature). The

data were sorted according to increasing calculated intensities

(top) and resolution (bottom). The level of significance for the

calculation of the confidence interval of the population

variances is � ¼ 0:01 in all cases. The left column shows

roughly constant residual mean values and variances as

expected for a data set without systematic errors. The mean

values of the residuals in each bin are consistent with each

other bin and with the value zero at a 3� level. The variances

of the residuals in each bin are consistent with each other and

with the value one at an � ¼ 0:01 level of significance. At the

given level of significance it is therefore justified to assume

that the residuals of all bins follow the same distribution in

Figs. 1(a) and 1(c).

Application of a significance cutoff Io=�ðIoÞ � 3 changes

the situation (Fig. 1, right column). The mean values of the

residuals are not consistent with each other any more, nor are

all of them consistent with the value zero. This is particularly

the case for the lowest calculated intensities (left part of Fig.

1b) and for the largest resolution shells (right part of Fig. 1d),

which are increasingly composed of weak reflections. The

cutoff criterion allows for those weak reflections that have

accidentally a large Io value, which is also correlated with a

positive residual �, and rejects those weak reflections which

accidentally have an Io value not much larger than the

respective Ic value. The situation is sketched in Fig. 1 of

Hirshfeld & Rabinovich (1973). The cutoff leads to a signifi-

cantly positive population of residuals for the weakest calcu-

lated intensities and to a significantly reduced variance. That

model parameters are affected by a significance cutoff in real

data sets was also shown by Arnberg et al. (1979) and is

discussed in more detail in Watkin (2008).

The assumption that the residuals from all bins belong to

the same distribution must be rejected at the given level of

significance. Therefore, the totality of residuals (at the given

level of significance) does not follow a distribution with equal

probabilities for positive and negative deviations from the

mean value in all resolution and intensity regions any more,

i.e. the mean value of the residuals ceases to be unbiased on

the true intensity. This systematic error may lead to model

parameter estimates that are far from the unbiased value and

far outside the range given by the calculated model parameter

errors. A further regrettable effect of the application of the

significance cutoff is that the detection of other systematic

errors leading to increased mean values of residuals for the

weak intensities and for high resolution may be obstructed.

The application to artificial data not suffering from

systematic errors shows that the concept of equal mean values

and variances for residuals applies and that the equality of

mean values and variances within statistical fluctuations is

easily destroyed by application of a significance criterion in

the least-squares refinement. This effect is seen in the

experimental data also, as will be discussed later.

3.2. Effects of distorted individual reflections

Modifications of data set 24 from Henn & Meindl (2014b)

were taken for studying well known systematic errors with the

help of artificial data. In each case the data were modified in

order to introduce a systematic error and the modified data

were taken as observed intensities for a least-squares refine-

ment. In the first case, five reflections from the lowest reso-

lution shell were modified according to the list in Table 1 to

simulate systematic measurement errors in the data.

The manipulated reflections lead to increased variances of

the residuals (see right column in Fig. 2) in the respective bins

and to Rmeta ¼ 17:2%; however, the n.p.p. does not differ

significantly from that of the error-free reference data (for the

n.p.p. of the error-free data see Fig. 3 K3 of the supporting
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Table 1
Original and modified values of five individually manipulated reflections
for the simulation of measurement errors.

h k l Io �ðIoÞ sin �=�

Original 2 0 0 12788.78 127.24 0.0976
Modified 2 0 0 6788.78 127.24 0.0976
Original 2 1 0 2756.80 29.11 0.1136
Modified 2 1 0 2256.80 29.11 0.1136
Original 3 0 0 7518.50 76.95 0.1465
Modified 3 0 0 5518.50 76.95 0.1465
Original 1 1 0 4142.62 42.82 0.0758
Modified 1 1 0 1642.62 42.82 0.0758
Original 2 3 0 2341.25 25.28 0.1995
Modified 2 3 0 2041.25 25.28 0.1995



information, for the n.p.p. of the data set with five intention-

ally flawed reflections see Fig. 4 K2 of the supporting infor-

mation).

3.3. Effects of distorted s.u. values

To study the effect of distorted s.u. values on the distribu-

tion of residuals, the intensity data of data set 24 were used

and the corresponding s.u. values were changed according to

�!
�

p1 � þ 1
ð2Þ

with p1 ¼ 0:01. A similar but much stronger transformation

with p1 ¼ 0:5 was studied in Henn & Meindl (2014b). The

transformation applied here is modest as the abundant weak

s.u.’s remain virtually unchanged; only the largest s.u. values

are affected. The transformation leads to a systematically

increasing underestimation of the large s.u.’s, the larger these

are. The effects on the mean values and variances of residuals

(see Fig. 2, left column) are qualitatively similar to those of

distorted reflections (see Fig. 2, right column): in the respec-

tive bins of intensities and resolution, the variances of resi-

duals increase. A side effect of the distortion of s.u. values as

given by equation (2) is again [as in Henn & Meindl (2014b)]

that it reduces the actual as well as the predicted R values:

whereas the noise present in the Io is equivalent to

wRðF2Þ ¼ 0:036, the actual R value becomes 0.025 and the

prediction based on the transformed s.u.’s is 0.022. This is an

important point, because it shows that by underestimating the

large s.u. values lower R values can be achieved as is expected

from the appearance of the squared significance in the

denominator for the predicted R values. This artificial

lowering of R values is at the expense of distorted model

parameter estimates, flawed model parameter s.u.’s and a

distorted distribution of residuals. It is rather delicate in this

context that the underestimated s.u. values force the Ic in the

proximity of the Io such that an Io versus Ic plot appears to

show a very good fit. That this fit is not based on a Gaussian

distribution is seen from the normal probability plot, which

now deviates from the expected distribution in the periphery
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Figure 2
Effects of systematic errors. Mean values (green line with blue error bars) and variances (red line with dashed confidence interval according to � ¼ 0:01)
of residuals � ¼ ðIo � IcÞ=½�ðIoÞ� in bins of equal strength sorted by the calculated intensity (top) and by sin �=� (bottom) of artificial data with
intentionally flawed s.u. values according to equation (2) (left column) and artificial data with five intentionally flawed intensity observations according to
Table 1 (right column).



(see Fig. 4 K in the supporting information) resulting in too

many rare events. Normal probability plots with deviations in

the periphery are very frequently observed in crystallographic

applications. The underlying reasons for these outliers should

be identified. A plot of residuals versus resolution shows a

broadening of the graph for low resolution in the case of

underestimated large s.u.’s (see Fig. 5c in the supporting

information). These are responsible for the large variances of

residuals depicted in Fig. 2 in the respective bins. Outliers in

plots of Io versus Ic are not detected in this case (Fig. 5d in the

supporting information), whereas in the case of correct s.u.

values and individual artificially flawed intensity observations,

these appear as outliers in plots of residuals versus resolution

(Fig. 5e in the supporting information) and in plots of Io versus

Ic (Fig. 5f in the supporting information), at least the strong

ones. The appearance of outliers in plots of residuals versus

resolution not accompanied by outliers in plots of Io versus Ic

may therefore be taken as a characteristic of systematic errors

caused by distorted s.u.’s.

4. Application to experimental data

If not indicated otherwise, we refer to the data sets as given in

Henn & Meindl (2014a) with their respective data-set

numbers. These data sets have been analysed by different

methods in the literature (Henn & Meindl, 2014a,b). Normal

probability plots, plots of observed versus calculated inten-

sities and of residuals versus resolution as well as BayCoN

plots are found in the cited literature and the respective

supporting information.

4.1. A refinement with systematic errors

As a first example, data set 5 is discussed as an experimental

data set known to be contaminated with systematic errors. The

reflections 01�11 and �2200 are identified as outliers in an Io versus

Ic plot (data not shown). Additionally, no weighting scheme

was used such that this data set most likely suffers from

underestimated large s.u. values.

Some of the residual mean values are not consistent with

each other and most are additionally not consistent with the

value zero at the 3� level of significance (see Fig. 3a and Fig. 1,

first column, in the supporting information). The assumption

of underestimated large s.u. values is consistent with the

increasing variance of the residuals sorted by the calculated

intensity. The variances consequently differ significantly from

each other at the � ¼ 0:01 level of significance.

When the data are sorted according to increasing resolution

(Fig. 3b), the residual mean value of bin 7 is inconsistent with

the assumption of a zero mean value at a 3� level of signifi-

cance. The variance of residuals shows distinct changes with

the resolution (‘u’ shape). The large variance in the lowest

resolution shell is influenced by the outliers; omitting the

outliers 01�11 and �2200 leads to a reduction (compare C1 and C2

in Fig. 1 of the supporting information). The bin values of the

variances are not consistent with each other and those from

bins 1, 5, 7, 8 and 10 are not consistent with the value one.

Sorting the residuals in increasing order (of the residuals)

shows that the variances of the extreme residuals are signifi-

cantly larger than those of the remaining residuals (Fig. 3c)

and that this is asymmetric with respect to positive and

negative residuals.

208 Henn and Meindl � Statistical tests against systematic errors Acta Cryst. (2015). A71, 203–211

research papers

Figure 3
Effects of systematic errors. Mean values (green line with blue error bars) and variances (red line with dashed confidence interval according to � ¼ 0:01)
of residuals � ¼ ðIo � IcÞ=½�ðIoÞ� in bins of approximately equal strength sorted by increasing Ic (a), sin �=� (b), residuals � (c) and squared residuals �2

(d) of data set 5. Cumulative rare events j�j> 3 sorted according to increasing sin �=� (e) and Ic (f).



Sorting the residuals according to their squared value shows

that the mean values of the residuals in bins 4, 6, 7, 8 and 9 are

not consistent with a zero mean value at the 3� level of

significance. Instead, the residuals systematically tend to

negative values (Fig. 3d).

The cumulative number of rare events j�j> 3 plotted

against the reflections sorted according to increasing resolu-

tion (Fig. 3e) shows an initial step for the lowest resolution

range and a final step for the highest resolution range. Steps in

these plots indicate a concentration of rare events, which

should be distributed uniformly over the whole resolution

range. There are 103 rare events j�j> 3 for 5136 reflections, a

fraction of 2%.

That rare events j�j> 3 are dependent on the intensity is

demonstrated by a plot of cumulative rare events plotted

against the reflections sorted according to increasing calcu-

lated intensities (Fig. 3f). The slope of this plot tends to

increase with increasing intensity, i.e. the larger the intensity

the more frequently rare events appear. This behaviour is

again in accordance with the assumption of too small large s.u.

values.

These characteristics found for data set 5 appear similarly in

data set 6 and, with modifications, in data set 7. Regarding the

mean values of residuals, in all three cases the following

observations apply:

(i) One or more bins with residual mean values are incon-

sistent with each other at a 3� level of significance, when

sorted against resolution.

(ii) One or more bins with distinctly negative residual

values are inconsistent with the assumption of a value zero at a

3� level of significance, when sorted against resolution.

(iii) Many bin mean values of residuals are inconsistent

with each other when sorted against increasing calculated

intensity.

(iv) Many bin mean values of residuals are inconsistent with

the value zero when sorted against increasing calculated

intensity.

(v) A characteristic ‘u’ shape of bin mean values of residuals

appears, when sorted against the calculated intensity.

(vi) Residual bin mean values inconsistent with each other

are observed when sorted in ascending order of �2.

(vii) Residual bin mean values tend to negative values when

sorted in ascending order of �2.

Regarding the variances of residuals:

(i) Variances of residuals are inconsistent with each other in

shells of resolution.

(ii) Variances are significantly increased for the lowest

resolution bin.

(iii) Variances of residuals tend to increase with the calcu-

lated intensity.

Regarding rare events j�j> 3:

(i) Rare events emerge with a higher frequency from low-

resolution parts as indicated by steps in the cumulative rare

events plots against resolution.

(ii) Rare events tend to originate more frequently from

higher intensities as indicated by the increasing slopes of

cumulative rare event plots against intensity.

These are only some common features of all three data sets;

each point indicates that the residuals of each individual data

set are not consistent with the other residuals of the same data

set.

4.2. A refinement with few systematic errors

For an example of a data set with few systematic errors, data

set 8 is discussed in analogy to the section before. This data set

corresponds to an anharmonic motion model refinement of

the explosive RDX at 20 K (Zhurov et al., 2011). With

increasing data quality, anharmonic motion models become

more and more important in charge-density studies (see, for

example, Meindl et al., 2010; Paul et al., 2011; Herbst-Irmer et

al., 2013; Poulain et al., 2014; Jarzembska et al., 2014; Pinkerton

et al., 2014, and many more).

Some of the residual mean values of residuals ordered

according to increasing calculated intensities are not consis-

tent with each other but most show an overlap and most are

consistent with the value zero at the 3� level of significance

(see Fig. 4a and Fig. 2, first column, in the supporting infor-

mation). The increased residual mean value for the lowest

calculated intensities is presumably a consequence of the

significance cutoff. Also the initial increasing variance of the

residuals sorted by the calculated intensity may be influenced

by the significance cutoff (compare with Fig. 1b). Some of the

variances differ significantly from each other at the � ¼ 0:01

level of significance; however, the whole range of variances

lies between approximately 0.7 and 1.5, i.e. the range of

variances is much smaller as compared to Fig. 3(a).

When the data are sorted according to increasing resolution

(Fig. 4b), all but the residual mean value of bin 1 are consistent

with the assumption of a zero mean value at a 3� level of

significance. The variance of residuals shows a tendency to

increase with the resolution, but all variances are consistent

with the value one.

Sorting the residuals in increasing order (of the residuals)

shows that the variances of the extreme residuals are slightly

larger than those of the remaining residuals (Fig. 4c) and that

all values are well below one. The increase is symmetric with

respect to positive and negative residuals. This effect of

slightly increased variances for the extreme residuals is also

observed for artificial data (see Fig. 3, column 3, in the

supporting information) and is dependent on the bin width.

Sorting the residuals according to their squared value shows

that the mean values of all residual bins but No. 7 are

consistent with a zero mean value at the 3� level of signifi-

cance. There is also a tendency to positive values for larger

absolute residuals (Fig. 4d).

The cumulative number of rare events j�j> 3 plotted

against the resolution (Fig. 3e) also shows a little initial step

for the lowest resolution range. There are in total 53 rare

events for 8057 reflections (0.7%). Steps in these plots indicate

a concentration of rare events, which should be distributed

uniformly over the whole resolution range. A large fraction of

those rare events j�j> 3 originate from reflections at positions

4500–5500, when sorted in increasing order (Fig. 3f). This
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corresponds to intensity values 90–150 and to the whole

resolution range. There are many similarities and only subtle

differences in the diagnosis plots for data sets 8 and 9, which

correspond to the same experimental data and different

thermal nuclear motion models as well as different error

models, as can be seen from columns 1 and 2 in Fig. 2 of the

supporting information. A remarkable difference between the

models is that the high frequency of rare events at very high

and at very low resolution is significantly reduced by the

anharmonic motion model (data set 8) as compared to the

harmonic nuclear motion model (data set 9). Anharmonic

motion models are expected to have a strong impact on high-

resolution data (Kuhs, 1988, 1992), although it has been shown

recently that data of considerably lower resolution (0.6 Å�1)

are affected, too (Herbst-Irmer et al., 2013). The present case

may indicate that the effects of anharmonic nuclear motion

are detectable by cumulative rare event plots even in the

lowest resolution shells. Clarification of this important point

needs more systematic investigations in the future.

4.3. Comparison between the two refinements

When e.g. the residual mean values are inconsistent

with each other despite a significance level that is tolerant

of outliers, one could use the term that they are self-

contradicting. In this sense, data set 5 is highly self-

contradicting, whereas data set 8 is less self-contradicting,

because from the ten bins of residual mean values sorted by

the calculated intensities for data set 5, only bins 8 and 9 and

probably bin 1 are in accordance with a value zero (Fig. 3a)

whereas for data set 8 only one bin is clearly inconsistent with

the value zero (Fig. 4a) and this inconsistency is likely to be

connected to the applied significance cutoff.

5. Summary, outlook and conclusion

Statistical tests based on the equality of sample means and

variances of residuals have been applied to artificial and

experimental diffraction data from the literature. The appli-

cation to artificial data without systematic errors proves the

applicability of the concepts. Application to artificial data with

significance cutoff showed how the significance cutoff leads to

residuals significantly shifted to positive values and to a

reduced variance of residuals in the bins of lowest intensities.

These shifts necessarily destroy the normal distribution that

might or might not be present without application of a

significance cutoff. It was also shown, with the help of artificial

data, how intentionally flawed reflections increase the

variance of residuals in the respective bins, similar to the case

of underestimated large s.u. values. An important difference

between these two cases is that in the latter the normal

probability plot shows deviations in the periphery and that the

former shows outliers in plots of both Io versus Ic and � versus

sin �=�, whereas the latter only shows outliers in � versus

sin �=� plots. Plots of cumulative rare events, that ideally show

a constant slope, proved to be useful to identify ranges of

resolution or intensities with increased and with reduced

probabilities of generating rare events. Application to

experimental data showed in one case strong variations of

residual means and variances with respect to intensities and

resolution, distinctly and unsymmetrically increased variances

for the extreme residuals, steps in the cumulative rare event
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Figure 4
Effects of systematic errors. Mean values (green line with blue error bars) and variances (red line with dashed confidence interval according to � ¼ 0:01)
of residuals � ¼ ðIo � IcÞ=½�ðIoÞ� in bins of approximately equal strength sorted by increasing Ic (a), sin �=� (b), residuals � (c) and squared residuals �2

(d) of data set 8. Cumulative rare events j�j> 3 sorted according to increasing sin �=� (e) and Ic (f).



plot sorted by resolution, and a concave shape of the cumu-

lative rare event plot sorted by intensity. A part of this can be

explained by underestimated s.u. values; however, it is likely

that more than one source of systematic errors applies here. It

was stressed that data sets of the same structure measured at

different temperatures show striking similarities. This may be

expected from the structures; however, it is assumed that these

similarities are also caused by similar data-processing steps.

The application to experimental data in another case showed a

behaviour of the descriptors much closer to the expected ideal

behaviour; however, also in this case the residuals tend to

slightly increased variances for increasing resolution, though

on a distinctly reduced scale. Also the systematic error caused

by application of a significance cutoff is clearly observed. A

step in the cumulative rare event plot sorted with respect to

the resolution is observed for very low resolution. This step is

larger for the harmonic motion model. The developed

methods can easily be generalized to include plots of residuals

versus s.u. values or significance, i.e. there is potential for

future developments.

There are now plenty of tools and techniques available for

the detection and identification of systematic errors. We hope

that this topic will attract more attention in the future. All of

these old and new tools are useless when they are not applied.
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